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I. Schröder1, T. Huth1, V. Suitchmezian1, J. Jarosik,2 S. Schnell1, U.P. Hansen1

1Center of Biochemistry and Molecular Biology, Leibnizstr. 11, 24098 Kiel, Germany
2Bioenergetics Institute, Adam Mickiewicz University, Poznan, Poland

Received: 11 July 2003/Revised: 22 October 2003

Abstract. Level or jump detectors generate the re-
constructed time series from a noisy record of patch-
clamp current. The reconstructed time series is used
to create dwell-time histograms for the kinetic anal-
ysis of the Markov model of the investigated ion
channel. It is shown here that some additional lines in
the software of such a detector can provide a pow-
erful new means of patch-clamp analysis. For each
current level that can be recognized by the detector,
an array is declared. The new software assigns every
data point of the1 original time series to the array that
belongs to the actual state of the detector. From the
data sets in these arrays distributions-per-level are
generated. Simulated and experimental time series
analyzed by Hinkley detectors are used to demon-
strate the benefits of these distributions-per-level.
First, they can serve as a test of the reliability of jump
and level detectors. Second, they can reveal beta
distributions as resulting from fast gating that would
usually be hidden in the overall amplitude histogram.
Probably the most2 valuable feature is that the mal-
functions of the Hinkley detectors turn out to depend
on the Markov model of the ion channel. Thus, the
errors revealed by the distributions-per-level can be
used to distinguish between different putative Mark-
ov models of the measured time series.

Key words: Amplitude histograms — Beta distribu-
tions — Discrimination of models — Hinkley detec-
tor — Markov models — Noise — Sublevels

Introduction

The kinetic behavior of ion channels is described by
Markov models (Korn & Horn, 1988; Yeo et al.,
1988; Ball & Rice, 1992; Blunck et al., 1998). There
are three methods for revealing an adequate Markov
model and for evaluating the rate constants of the
transitions between the states of these Markov
models: 1. Applying level and jump detectors in order
to create dwell-time histograms (Schultze & Draber,
1993; Colquhoun, Hatton & Srodzinsky, 1996;
Blunck et al., 1998). 2. Applying a direct fit to the
time series using a Maximum Likelihood estimator
(Fredkin & Rice, 1992; Albertsen & Hansen, 1994;
Klein, Timmer & Honerkamp, 1997; Farokhi, Keu-
necker & Hansen, 2000; Hansen et al., 2003) 3. Cre-
ating amplitude histograms and fitting the deviations
from Gaussians by beta distributions (FitzHugh,
1983; Yellen, 1984; Klieber & Gradmann, 1993;
Riessner, 1998).

Dwell-time analysis requires reliable detectors for
estimating the current levels of the time series and for
detecting the jumps (times of the transitions from one
conducting state to another). The direct fit of the time
series needs only a level detector, whereas beta dis-
tributions can be generated without any detector.
Farokhi, Keunecke and Hansen (2000) have shown
that the direct fit of the time series is more powerful
than dwell-time analysis at the edge of temporal
resolution. Nevertheless, dwell-time analysis is much
less time-consuming; analysis and results are more
obvious to the researcher, whereas the HMM fit
works in the dark tunnel of mathematics, as it does
not provide a graphical control of the procedure. The
output is just some numbers (rate constants), which
the researcher has to believe. Thus, there is still a role
for dwell-time analysis (Colquhoun, Hatton &
Hawkes, 2003) and consequently a need for reliable
jump detectors. The investigations reported here will
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show that the analysis of beta distributions, too, can
profit from level and jump detection.

Noise and fast gating often lead to malfunctions
of the employed detectors. Every jump detector has
an integration time to smooth out noise. Increasing
this integration time reduces false alarms (fake tran-
sitions induced by noise), but increases the number of
missed events. Schultze and Draber (1993) employed
simulated time series to find an optimum compromise
between false alarms and missed events with Hinkley
detectors.

More desirable than transferring the settings of
the detector (integration time) from simulated data to
experimental data would be a test that can reveal the
malfunctions of the detectors. Here, the analysis of
distributions-per-level is introduced. Distributions-
per-level can be obtained by adding a simple routine
to the software of the detectors. The additional
software compares the measured time series with the
reconstructed one as obtained from the employed
level and/or jump detector. It opens one data array
per detected current level; all data points from the
measured time series are assigned to these arrays as
suggested by the actual level indicated by the detec-
tor. From these arrays, amplitude histograms are
created resulting in distributions-per-level.

For the investigations below, Hinkley detectors
(Schulze & Draber, 1993; Draber & Schulze, 1994b)
are employed, because they are a little bit faster than
low-pass filters with threshold detectors (because real
integration replaces low-pass filtering, and an algo-
rithm deleting trends in the ‘‘wrong’’ direction keeps
the detector alert). The investigation of the per-
formance of the distributions-per-level showed their
ability to estimate malfunctions of the detectors.
However, more interestingly, they provided some
fringe benefits, namely a means of discriminating
different Markov models suggested for the measured
time series. Another benefit enhancing the power of
beta distribution analysis in order to get a quantita-
tive description of fast gating, is illustrated for ex-
perimental data.

Materials and Methods

ELECTROPHYSIOLOGICAL MEASUREMENTS

Patch-clampmeasurements were performed on cytosolic droplets of

Chara as described previously (Farokhi et al., 2000; Hansen

et al., 2003) or on Maxi-K channels (Moss & Magleby, 2001; Shi &

Cui, 2001) expressed in HEK cells (a gift from Prof. U. Seydel and

Dr. A. Schromm, Research Center, Borstel). For Chara droplets,

the pipette (luminal) was filled with 250 mM KNO3 + 5 mM

Ca(NO3)2 and the bathing medium (cytosolic) contained 230 mM

KNO3 + 20 mM TlNO3 + 5 mM Ca(NO3)2. For HEK cells, the

solution in the pipette (luminal) was in mM. 5 KNO3, 140 NaNO3,

1.2 Mg(NO3)2, 4.17 NaHCO3, 0.44 KH2PO4, 0.34 Na2HPO4, pH=

7.2, and in the bathing medium (cytosolic) it was 10 TlCl, 140 KCl, 5

MgCl2, 103 HEPES, pH = 7.2.

The experimental setup is described in detail by Draber and

Hansen (1994). Briefly, electrodes were made from borosilicate

glass (Hilgenberg, Malsfeld, Germany) coated internally with Sig-

macote (Sigma, Deisenhofen, Germany), drawn on an L/M-3P-A

puller (List, Darmstadt, Germany), and filled with the solution

mentioned above. External coating with Sylgard (Dow Corning,

USA) was not employed. Instead, the technique of Keunecke

(Farokhi et al., 2000) of keeping the pipette with the excised patch

(inside-out) close to the surface of the bathing solution (20 lm)
reduced noise to a r of less than 1 pA at 50 kHz bandwidth. Patch-
clamp current was recorded by a Dagan 3900A amplifier (Dagan,

Minneapolis, Minnesota, USA) with a 4-pole anti-aliasing filter of

50 kHz. Data was stored on disk with a sampling rate of 200 kHz.

SIMULATION OF SURROGATE TIME SERIES

Time series were generated from a selected Markov model with an

assumed set of states and rate constants. As described in detail

previously (Blunck et al., 1998; Caliebe, Rösler & Hansen, 2002;

Riessner et al., 2002), a temporal sequence of sojourns in the states

of the assumed Markov model was generated, and the true single-

channel current assigned to the actual state was superimposed by

white noise as defined by the selected signal-to-noise ratio (SNR).

The resulting signal was fed into the same filter as used for the

filtering of the experimental data (program available at http://

www.zbm.uni-kiel.de/software).

GENERATING DISTRIBUTIONS-PER-LEVEL

Our patch-clamp program for data analysis (kielpatch.exe on

http://www.zbm.uni-kiel.de/software) includes three built-in

Hinkley detectors: First-Order Hinkley Detector, Higher-Order

(8th) Hinkley Detector (HOHD, Schulze & Draber, 1993) and the

Dynamic Hinkley Detector (DHD, Draber & Schulze, 1994b) that

can also detect sublevels. The Hinkley detectors need a-priori in-

formation, i.e., the putative current levels and the related variance

in order to get optimum settings of the threshold for jump detection

(Schultze & Draber, 1993). The levels can be supplied by three

different methods: a) fit of the amplitude distributions by a sum of

Gaussians; b) fit-by-eye and c) automatic level detector. Riessner

et al. (2002) have shown that fit-by-eye and the automatic detector

perform equally well, whereas the analysis of the amplitude histo-

gram by Gaussian distributions fails in noisy time series with fast

gating.
Distributions-per-level were obtained from a bookkeeping

routine added to the software of the Dynamic Hinkley detector

(DHD). This routine creates different data arrays, one for each

current level. The routine sorts the data points of the measured

time series into that array indicated by the actual level as suggested

by the Hinkley detector.

Modeling and Experimental Results

TEST OF DETECTORS

If a detector works well, the distributions-per-level of
a time series without fast gating should be Gaussian
distributions around the nominal current values.
However, missed events and false alarms (Schultze &
Draber, 1993) spoil this nice picture. The suggested
test of the performance of the detector is illustrated
by means of surrogate data, i.e., by time series sim-
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ulated from an assumed Markov model as described
above.

The models used for illustrating the performance
of the distributions-per-level are quite simple models
with one state for each conductance level. Hidden
Markov Models (HMM) are not employed because
level detectors4 do not recognize jumps between states
of equal conductivity (kinetic states that are not dis-
tinguished by the applied experimental procedure can
be merged into apparent states, Hansen, Tittor &
Gradmann, 1983).

Figure 1A shows the amplitude histogram ob-
tained from a C-O model (one open state O and one
closed state C) with the parameters given in the leg-
end. Because of high noise, the individual peaks
cannot be distinguished. This amplitude histogram
should be fitted by the sum of two Gaussians (not
shown), but a good fit is also obtained with a sum of
three Gaussians (shown by the Gaussians in Fig. 1A).
The fit with this wrong Scenario is quite perfect and
supports the statement by Riessner et al. (2002) that
the fit of amplitude histograms is the least reliable
means of determining current levels. Thus, the ex-

perimenter erroneously believes that the time series
can be fitted with three levels, with the currents and
variance taken from the Gaussians in Fig. 1A. The
DHD detector with the settings from the three
Gaussians finds sojourns at the assumed levels. These
levels (Z, F, 2F) are given as solid vertical lines in Fig.
1C, whereas the true levels O and C are denoted by
dotted lines.

The distributions-per-level in Fig. 1C delivered
by the Hinkley detector show two important features
(with O, C being the true levels, Z, F, 2F those found
by the detector).

1. The distributions related to Z and 2F peak at the
true levels C and O (Fig. 1C). This indicates that Z
and 2F were the wrong choice.

2. The distribution related to F has its peak at level F.
This may be unexpected as we know that there is
no level F. Here an effect may come into play that
is investigated in more detail below, namely the
generation of sublevels by the anti-aliasing filter of
the recording apparatus. The filter smoothes the
transitions between currents levels, generating data

Fig. 1. Distributions-per level as a means of detecting malfunctions

of the level detectors. (A) Time series simulated from a symmetrical

C-O model with the rate-constants kCO = kOC = k = 1000 s�1.

Current of the open state is 2 pA and the noise variance is r=1 pA.
The amplitude histogram is fitted by a two-channel model with the

states Z (closed), F (one channel open) and 2F (two channels open).

The fit yields the following currents: I(Z) = �0.24 pA, I(F) = 1 pA

and I(2F) = 2.37 pA. The variance was smaller than that of the

simulation, r= 0.92 pA. The parameters obtained from this fit are

used as settings for the Hinkley detector, resulting in distributions-

per-level shown in (C). The resulting two major distribution func-

tions can be fitted with their peaks located at 0 and 2 pA and r= 1

pA, i.e., exactly the values used for the simulation of (A). (B) Here, a

two-channel model (2 · C-O) with nominal currents at 0 pA, 2 pA

and 4 pA and r=1.2 pA is fitted by a simpleZ-Fmodel resulting in

I(Z) = 0.85 pA, I(F) = 3.16 pA and r = 1.43 pA. (D) Distribu-

tions-per-level obtained from the two-state fit of (B) with levels at

0.85 pA and at 3.1 pA with r = 1.64 pA.
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points between the levels. Further, noise may lo-
cate some adjacent data points in the range of the
detector looking at level F.

Nevertheless, the deviations of the peaks of the two
major distributions clearly indicate that the detector
was set to the wrong levels, thus revealing the in-
correct hypothesis. In addition, the peaks of these
distributions indicate the location of the true levels.

The other way round does not work so well, i.e.,
generating the time series with a three-state model (C-
O-2O) and analyzing it erroneously with a two-state
model. Figure 1B shows that a perfect fit of the am-
plitude histogram can be obtained with two Gaus-
sians at level Z and F. Using these parameters as
settings for the DHD yields the distributions-per-level
in Fig. 1D. The two distributions look quite good.
The only indication of malfunction is the feature that
the top is broader than the basis. If the distributions
are fitted with Gaussians (smooth lines in Fig. 1D)
then most of the data points close to the peak de-
termine the parameters of the fit. Figure 1D shows
that at the base the fitted distribution is wider than
the experimentally determined one. This is unusual,
as in all cases investigated below, the base tends to be
wider than the top (relative to the Gaussian distri-
bution). Nevertheless, this is quite a weak argument
for rejecting the incorrect fit of Fig. 1B. There are two
better approaches. The first one is to look for a jump-
free section of the time series. Then it becomes ob-
vious that the noise of the fitted distributions is
higher than that of the jump-free section. The second
approach would be an attempt to make a fit with a
higher number of levels. If the number of estimated
levels is higher than that of the measured time series,
this would be indicated by a phenomenon such as
that in Fig. 1C.

In the following sections, additional indications
of malfunctions are obtained and discussed. However,
a probably more important feature of the distribu-
tions-per-level will be demonstrated: discrimination
between different Markov models and investigation of
the origin of sublevels.

MODEL DISCRIMINATION

Forbidden Transitions

The kinetic behavior of channel gating is described by
Markov models. Often it is difficult to make a deci-
sion as to whether a putative model is the correct one.
Here some examples are given that show that the
distributions-per-level can be helpful. However, it is
not possible to distinguish between states of equal
conductivity in Hidden Markov models.

The first case deals with the problem addressed
previously by Caliebe et al. (2002) and Draber and
Schultze (1994a). Two scenarios are compared: Sce-

nario 2Ch (‘‘two channel’’): two identical channels
with three levels: C (closed), S (sublevel) and O
(open). Scenario 4Ch (‘‘four channel’’): A set of four
channels, two with the levels C and S and two with
the levels C and O.

A time series is generated on the basis of scenario
2Ch, i.e., 2 channels C-S-O. However, the researcher
does not know the correct scenario. Imagine that the
DHD (Draber & Schultze, 1994b) is set erroneously
to analyze the time series on the basis of the wrong
scenario 4Ch. The DHD Hinkley detectors search
and find events on all levels of the scenario 4Ch, i.e.,
C, S, 2S, O, O+S, O+2S, 2O, 2O+S, 2O+2S.
Thus, seeing only the record of the Hinkley detector
(Fig. 2A) and the related dwell-time distributions (not
shown), the experimenter is tempted to believe that
scenario 4Ch (2 small and 2 big channels) holds.
(Even though 2O+S and 2O+2S have not been
observed, the experimenter may believe that these
levels occur too rarely.) Now, the generation of the
distributions-per-level helps to detect a wrong choice
of model. Fig. 2B shows that the ‘‘false’’ levels do not
peak at their nominal current values but at a current
level that occurs only in (the correct) scenario 2Ch.
This shows that the Hinkley detector has done in-

Fig. 2. Time series generated by scenario 2Ch (2 cyclic C-S-O-

models as in the inset of Fig. 4B, C) with all rate constants = 1000

s�1 and current in S= 2 pA and inO= 5 pA, variance of the noise

r = 1 pA. (A) Section of the time series showing the incorrect

operation of the Hinkley detector adapted to the wrong model

(scenario 4Ch). (B) Distributions-per-level created from the time

series in (A).
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correct assignments. An example of such an incorrect
assignment is shown by the arrow in Fig. 2A. The
channel has jumped to level 2O, but that one of the
simultaneously working Hinkley detectors aiming at
O+2S has won the race (Draber & Schultze, 1994a).
The Hinkley detector thus claims to have seen level
O+2S. The distributions-per-level, however, show
that O+2S is not an allowed level, as it does not peak
at its nominal value in Fig. 2B. The peak at 2O in-
dicates that the detector erroneously has taken jumps
to 2O as jumps to O+2S, as shown in Fig. 2A.

Sequence of Levels

The second case deals with the sequence of levels.
Time series are generated for two different scenarios,
and it is tested whether the distributions per level can
tell which one of the two models was used to generate
the investigated time series. Scenario CSO consists of
one channel with the Markov model C-S-O. The
Markov model of scenario SCO is S-C-O. Thus, the
only difference between the two scenarios is the order
of states. Time series were generated for both sce-
narios with the rate constants given in the legend of
Fig. 3. The Hinkley detector (DHD, Draber &
Schultze, 1994b) uses the same settings for both sce-
narios: it looks for the levels C, S, and O.

Figure 3 shows that the distributions-per-level
can find out which time series belongs to which sce-
nario. The crucial feature that becomes obvious in
Fig. 3 is obtained from the comparison of the right-
hand slopes of the S-level-distributions in Fig. 3A and
Fig. 3B. This slope shows a perfect Gaussian shape in
Fig. 3B, but not in Fig. 3A. The reason is obvious: the
transition O-S must not occur in scenario SCO in
Fig. 3B, and levels O and S are never adjacent. Thus,
the detector cannot erroneously remain in S when the
channel has already jumped into state O, because
such a transition does not occur. This criterion cor-
responds to that of the transition matrices suggested
by Draber and Schultze (1994b). On the other hand,
the bulge on the right-hand side of the C-level distri-
bution extending to level O indicates that the channel
has already jumped from C to O, but the detector has
failed to realize this. The same holds for the left-hand
side of the O-level distribution. The origin of the
bulges on the slopes of the distributions in Fig. 3B lies
in the fact that the detector has failed to realize in
time the jump from C to O, or missed events have
occurred, i.e., jumps into state O that have not been
realized by the detector.

Cyclic vs. Linear Markov Models

The third case shows that cyclic models can be dis-
tinguished from linear models. Scenario CYC is a
cyclic model as shown in the inset of Fig. 4B/C.
Scenario LIN is a linear model as shown in the inset
of Fig. 4D/E.

Time series were generated for both models with
the rate constants as given in the legend of Fig. 4.
Figures 4B and D reveal a feature that is already
known from Fig. 3: In the model S-C-O (Fig. 4D) the
transition between S and O must not occur. This is
indicated by the Gaussian slope on the right-hand
side of the distribution of level S. The bulge on the
left-hand side of O may be considered as an example
against this argument. However, the long extension
of the bulge indicates that it results from undetected
O fi C jumps, similar to the right-hand bulge of the
C-level distribution resulting from C fi O jumps.

Thus, it is already possible to distinguish between
scenario CYC and scenario LIN on the basis of the
criterion applied in Fig. 3: Deviations from the
Gaussian slope indicate that a transition may occur.
(This means that the sleepiness of the detector helps
to reveal existent transitions).

However, there is another test. The software of
the Hinkley detector provides the option to forbid
certain transitions. The distributions-per-level in Fig.
4C and Fig. 4E are obtained under the constraint that
the transitions between S and O are forbidden. This
constraint should not affect scenario LIN, because
this transition must not occur. Basically, the distri-
butions in Fig. 4D and E look very similar. The only

Fig. 3. Revealing the sequence of states. (A) Distributions-per-level

obtained from a time series simulated for a C-S-O model with the

following settings: all rate constants 1000 s�1, current in S= 2 pA,

current in O = 4 pA, variance of the noise r = 1 pA. (B). Dis-

tributions-per-level obtained from a time series simulated for an

S-C-O model with the same currents and rate constants.
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difference is that in Fig. 4E a bulge also occurs on the
right-hand side of the S-distribution. This is difficult
to understand. A solution may be as follows. If there
are jumps S fi C fi O, and the sojourn in C is not
realized by the detector (or if a double jump has oc-
curred), then a jump S fi O seems to have occurred
in the experimental data. If the detector is fast en-
ough this rare event would not spoil the slope in Fig.
4E. However, if the transition S fi O is forbidden,

then the detector remains in the nominal level S, but
the data points belong to O.

Thus, the introduction of the restriction inacti-
vates the criterion of Fig. 3, but a better criterion is
obtained instead: now, the distributions of level S and
O in Fig. 4C display satellite peaks at the wrong
levels. In the cyclic model, transitions between O and
S do occur, but the detector is not allowed to follow
them.

Fig. 4. Distributions-per-level obtained with and without restric-

tion for the Hinkley detector from time-series generated from two

different models, as indicated by the insets. (A) Simulated time

series obtained from the cyclic model of (B) and (C). The solid line

gives the reconstructed time series provided by the Hinkley detec-

tor. Arrows indicate malfunctions. (B, C) Cyclic model with all the

rate constants being 1000 s�1. (D, E) Linear Markov model with all

the rate constants being 1000 s�1. (C) and (E): Distributions-per-

level from level detectors working under the constraint that the

transitions S-O are forbidden.
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Examples are shown in Fig. 4A. At arrow 1, the
time series jumps from O to S. The detector, however,
can jump to S only via the allowed transitions O-C-S.
This may occur also with restriction, and conse-
quently the extensions of the C-distributions into the
range of the S and O distributions is of the same
magnitude in Fig. 4B and Fig. 4C. The interesting
events occur at arrow 2 and arrow 3. At arrow 2, the
time series jumps from S to O, but the detector is not
allowed to follow. Thus, data points of O are as-
signed to level S, leading to the satellite peak of the S-
distribution at level O in Fig. 4C. The situation at
arrow 3 in Fig. 4A gives an example of the generation
of the satellite peak of the O-distribution at level S in
Fig. 4C.

The situations indicated by arrows 2 and 3 do not
occur in the S-C-O model. The restriction has an
effect only if double jumps occur. However, they are
rare. Nevertheless, they may lead to the small differ-
ence between Fig. 4D and E discussed above.

REVEALING FAST GATING

The detection of fast gating in a measured time series
is still a difficult problem. Farokhi et al. (2000) have
shown that dwell-time analysis fails near the corner
frequency of the anti-aliasing filter. The direct fit of
the time series with a Hidden-Markov model can
extend the range to higher rate constants (and thus
was successful in detecting the fast gating causing the
reduction of the apparent single-channel current in
the AMFE; Farokhi et al., 2000; Hansen et al., 2003).
However, an even more powerful means is the anal-

ysis of beta distributions describing the gating-in-
duced deviation of the amplitude histogram from the
Gaussian distribution caused by the noise of the
jump-free time-series (FitzHugh, 1983; Yellen, 1984;
Klieber & Gradmann, 1993; Riessner, 1998). The
generation of Beta distributions by fast gating is il-
lustrated in Fig. 6, below. In experimental data, the
beta distributions of individual levels may be hidden
in the sum of the distributions of all levels.

Here we show that the distributions-per-level
may be helpful. Figure 5A shows a time series ob-
tained from a Maxi-K channel under conditions
given in Materials and Methods. After a long record
with moderate switching, all of a sudden the channel
enters a mode of fast gating. At the right-hand side of
Fig. 5A, it returns to the original mode. This time
series clearly demonstrates how fast gating leads to a
reduction of apparent single-channel current. In Fig.
5A, the effect is immediately obvious. This is similar
to the situation of the Cs+ block of the K+ channel in
Chara (Draber & Hansen, 1994), whereas in the case
of the K+/Tl+ AMFE in Chara the reduction of ap-
parent single-channel current by fast gating had to be
revealed by means of a long mathematical analysis
(Farokhi et al., 2000).

The interval of fast flickering in Fig. 5A is used
for the generation of the distributions in Fig. 5B and
C. Figure 5B gives the overall-amplitude distribution.
It is obvious that details cannot be recognized.
However, the distributions-per-level in Fig. 5C clearly
show the occurrence of beta distributions. The dis-
tribution of the closed state is asymmetrical and the
O-distribution has become broader than the distri-

Fig. 5. Revealing beta distributions

as caused by fast gating by means of

the distributions-per-level. (A) Time

series obtained from a Maxi-K

channel expressed in HEK-cells

showing mode switching, i.e., a

sudden change in the kinetic prop-

erties of the channel (the middle

part of about 150 ms has been

omitted in order to show the tran-

sitions with higher temporal reso-

lution). (B) Overall amplitude

histogram of the middle section of

(A) showing fast flickering. (C)

Distributions-per-level. The smooth

lines give the Gaussian distribution

of the noise as obtained from the

section of the time series with slow

gating (right- and left-hand side

of A).
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bution of apparent jump-free sections of the time
series (smooth lines in Fig. 5C).

Here, the data from the Maxi-K channel serve to
demonstrate the new approach opened by the distri-
butions-per level. The detailed analysis of the beta
distributions in Fig. 6 is carried out in the framework
of the investigation of the occurrence of the K+/Tl+-
AMFE in Maxi-K channels and will be published in a
forthcoming paper.

SUBLEVELS AND FAST GATING

In our experiments on the K+ channel in Chara, there
were times when sublevels occured very frequently,
and at other times they did not occur for months.
There were two questions that could not be settled. 1.
What conditions caused their appearance? 2. Were
they true conductance levels, or were they just ap-
parent levels as caused by averaging over fast gating?
We do not see how to tackle the first question, but the
distributions-per-level may provide a means of solv-
ing the second question. If the sublevels arise from
fast gating, distributions-per-level may reveal beta
distributions as in the example of Fig. 5.

In order to study what kinds of effect can occur,
fast flickering producing an apparent sublevel was
generated by an O-C model. A two-state model is

sufficient, because longer sojourns in the C- and O-
state do not contribute to the putative flickering
causing the sublevel.

Figure 6A shows distributions resulting from a
fast flickering O-C model. The rate-constants kOC
and kCO are equal. This is to be expected because the
sublevel has been found to occur in the middle be-
tween C and O. Figure 6B gives an estimate in what
range of rate constants the generation of a sublevel by
fast flickering can occur and what effects on the shape
of the distributions-per-level are to be expected.

The curves in Fig. 6A show that there is a limited
range of rate constants where the distribution func-
tions would reveal gating as the origin of the sub-
levels. If the rate constants are too slow (up to k =
filter bandwidth), analysis would identify the two
original levels O and C. If they are too fast (107 s�1),
the filter smoothes out the effects of gating, and the
beta distribution does not get wider than the Gaus-
sian distribution of the superimposed noise.

The curves in Fig. 6A are compared with that one
obtained from the sublevel (S) of the measured data
in Fig. 6C. Since these sublevels are in the middle
between O and C, the putative rate constants of the
flickering have to be symmetrical. This implies that
there is no skewing of the beta distributions as in the
C-level distribution in Fig. 5. The only candidate for

Fig. 6. Comparison of sublevels generated by fast flickering in

surrogate data and those measured in inside-out recordings from

the dominant K+ channel in the tonoplast of Chara. Simulated and

real data with I(O) = �5 pA, noise r= 1 pA, bandwidth of 4-pole

Bessel filter = 50 kHz. (A) Simulated data in a symmetrical C-O

model with the rate constants kCO = kOC = k as given on the

curves in s�1. (B) Distributions-per-level at k= 50,000 s�1 and at k

= 100 s�1. (C) Distributions-per-level obtained from Chara. (D)

The overall amplitude histogram from Chara.
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indicating fast gating is the width of the beta distri-
bution. Unfortunately, the distribution of the sub-
level in Chara is only 10% broader than that of the
Gaussian distribution of the noise of a jump-free time
series (inner smooth line in the middle distribution of
Fig. 6C). In Fig. 6A 10% broadening is obtained for k
= 106 s�1. No sign of this broadening can be ob-
served in the overall amplitude histogram of Fig. 6D.

It may be questioned whether the broadening of
the sublevel distribution in Fig. 6C really results from
fast gating (beta distribution) or whether it originates
from a malfunction of the detector. However, the
message that can be taken from Fig. 6C is that the
broadening is not more than 10%. This implies that if
these sublevels originate from fast gating the rate
constants must be higher than 106 s�1. This means
that for a current of 6 pA of the full level on average
only 40 ions can pass the pore during one mean open
time.

Fig. 6C thus gives an estimation of how fast a
recording system has to be in order to test whether
sublevels are caused by fast gating.

Discussion

Usually, level detectors work hidden in an encapsu-
lated sphere of mathematics. There are few and not
very efficient statistical means of controlling their
operation by means of simulations (Schulze & Dra-
ber, 1993; Riessner et al., 2002). The determination of
the distributions-per-level turns out to provide a look
into this dark sphere and watch the performance of
the level detectors. The integrals over the bulges in
Fig. 3 may provide an estimate of how many data
points were assigned to the wrong levels.

However, distributions-per-level may not only
act as supervisors of level detectors (Figs. 1 and 2);
the ability to distinguish between different Markov
models as shown in Figs. 2 to 4 may become a useful
means of modelling.

Revealing beta distributions, as in Figs. 5 and 6,
would be a very important means of increasing tem-
poral resolution if the distributions-per-level obtained
by the extended software of the Hinkley detector are
reliable. As shown in Figs. 1 to 4, deviations from the
Gaussian form may be caused by malfunction of the
Hinkley detector. However, the comparison of Figs. 1
to 4 with Figs. 5 and 6 shows that the beta distribu-
tions have a more harmonic curve shape than those
resulting from the failures of the detector. This
strengthens the belief that the observed beta distri-
butions are true.

A general theory is not yet available, but simu-
lations can help. It has to be recommended that every
statement obtained from this kind of analysis has to
be tested on surrogate data. Simulations have to be
employed in order to check whether the model ob-

tained from the analysis generates exactly the time
series and distribution functions that have been ob-
tained directly from the data. In a second step, al-
ternative models have to be used for the generation of
the simulated time series and to check whether the
related distributions differ significantly from those of
the measured data. This would be an indication of
how unique the evaluated model is.

Even if the distributions-per-level do not result in
an unambiguous conclusion it provides an additional
and powerful criterion for testing hypotheses by si-
mulations. If this interplay between surrogate and
experimental data is done thoroughly, the distribu-
tions-per-level can turn out to be a useful means of
model discrimination and of increasing temporal
resolution.
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